Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction

نویسندگان

  • J.-P. Ampuero
  • Y. Ben-Zion
چکیده

S U M M A R Y We study in-plane ruptures on a bimaterial fault governed by a velocity-weakening friction with a regularized normal stress response. Numerical simulations and analytical estimates provide characterization of the ranges of velocity-weakening scales, nucleation lengths and background stresses for which ruptures behave as cracks or pulses, decaying or sustained, bilateral or unilateral. With strongly velocity-weakening friction, ruptures occur under a wide range of conditions as large-scale pulses with a preferred propagation direction, that of slip of the more compliant material. Such ruptures have macroscopic asymmetry manifested by significantly larger seismic potency and propagation distance in the preferred direction, and clearly quantified by the directivity ratio derived from the second order moments of the spatiotemporal distribution of slip rate. The macroscopic rupture asymmetry of the large-scale pulses stems from the difference in the criticality conditions for self-sustained propagation in each rupture direction, induced by the asymmetric normal stress changes operating in bimaterial interfaces. In contrast, crack-like ruptures show macroscopic asymmetry under restrictive conditions. The discussed mechanism is robust with respect to regularization parameters, ranges of stress heterogeneities and a proxy for off-fault yielding and should operate similarly for crustal-scale rupture pulses even in the absence of velocity-weakening. Small-scale pulses, driven by the bimaterial normal stress reduction at the scale of the process zone, can detach from the rupture front of the large-scale pulses that propagate in the preferred direction. However, their occurrence depends on the relaxation scale in the regularization of the normal stress response and their development can be hindered by off-fault yielding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic rupture on a bimaterial interface governed by slip-weakening friction

S U M M A R Y We perform 2-D finite-difference calculations of mode II rupture along a bimaterial interface governed by slip-weakening friction, with the goal of clarifying rupture properties and the conditions leading to the development of unilateral wrinkle-like pulses. The simulations begin with an imposed bilateral rupture in a limited source region. Rupture properties outside the imposed s...

متن کامل

Aftershock asymmetry on a bimaterial interface

[1] To better understand the asymmetric distribution of microearthquake aftershocks along the central San Andreas fault, we study dynamic models of slip-weakening ruptures on an interface separating differing elastic half-spaces. Subshear ruptures grow as slightly asymmetric bilateral cracks, with larger propagation velocities, slip velocities, and normal stress changes at the rupture front mov...

متن کامل

Properties of inelastic yielding zones generated by in - plane dynamic ruptures — II . Detailed parameter - space study

We perform a detailed parameter-space study on properties of yielding zones generated by 2-D in-plane dynamic ruptures on a planar fault with different friction laws and parameters, different initial stress conditions, different rock cohesion values, and different contrasts of elasticity and mass density across the fault. The focus is on cases corresponding to large strike-slip faults having hi...

متن کامل

Comment on ‘‘The wrinkle-like slip pulse is not important in earthquake dynamics’’ by D. J. Andrews and R. A. Harris

[1] Andrews and Harris [2005] (hereinafter referred to as AH) found in several numerical simulations that effects associated with prescribed stress heterogeneities and timeweakening friction can suppress those generated dynamically by rupture on a bimaterial interface, and concluded that the wrinkle-like rupture mode is generally not important for earthquake dynamics. Their results are based on...

متن کامل

Rupture modes in laboratory earthquakes: Effect of fault prestress and nucleation conditions

[1] Seismic inversions show that earthquake risetimes may be much shorter than the overall rupture duration, indicating that earthquakes may propagate as self‐healing, pulse‐like ruptures. Several mechanisms for producing pulse‐like ruptures have been proposed, including velocity‐weakening friction, interaction of dynamic rupture with fault geometry and local heterogeneity, and effect of bimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008